

Série 5 - Systèmes de coordonnées

1 Coordonnées : paramétrisation

Objectif: Paramétrisation géométrique d'une sphère et d'un cylindre.

Théorie: 5.1 Coordonnées cylindriques; 5.2 Coordonnées sphériques.

Ecrire en coordonnées cartésiennes (x, y, z), cylindriques (ρ, ϕ, z) et sphériques (r, θ, ϕ) :

- (a) L'équation d'une sphère de rayon R centrée à l'origine O.
- (b) L'équation d'un cylindre parallèle à l'axe z, de rayon R, de longueur L, dont l'axe passe par l'origine O.

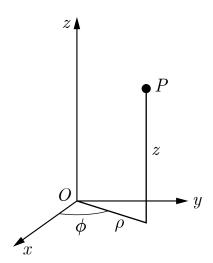
2 Vitesse et accélération en coordonnées cylindriques et sphériques

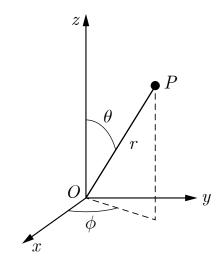
Objectif: Application des formules de Poisson afin de déterminer les grandeurs cinématiques en coordonnées cylindriques et sphériques.

Théorie: 5.1 Coordonnées cylindriques; 5.2 Coordonnées sphériques; 5.3 Rotations.

- (a) Etablir les expressions de la position, de la vitesse et de l'accélération en coordonnées cylindriques (ρ, ϕ, z) en utilisant les formules de Poisson pour les dérivées temporelles des vecteurs de base du repère tournant.
- (b) Etablir les expressions de la position, de la vitesse et de l'accélération en coordonnées sphériques (r, θ, ϕ) en utilisant les formules de Poisson pour les dérivées temporelles des vecteurs de base du repère tournant.

Ces systèmes de coordonnées sont illustrés sur les deux figures suivantes :



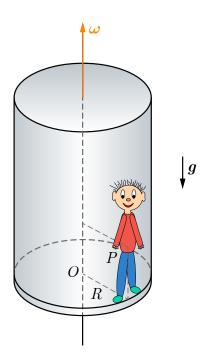


3 Manège à plancher rétractable

Objectif : Modélisation d'un mouvement circulaire uniforme en coordonnées cylindriques.

Théorie: 5.1 Coordonnées cylindriques.

Un manège est constitué d'un grand cylindre creux de rayon R qui peut tourner autour de son axe de symétrie vertical. Un homme, que l'on peut modéliser par un point matériel Pde masse m soumis au champ de pesanteur $g = -g \hat{z}$, prend place dans le cylindre, plaqué contre la face interne du cylindre et l'ensemble est mis en rotation. Lorsque la vitesse angulaire $\omega = \omega \hat{z}$ est suffisante, elle est maintenue constante, le plancher est retiré et l'homme reste "collé à la paroi". La condition de frottement sans glissement sur la norme de la force de frottement statique est $F_f \leqslant \mu_s N$ où μ_s est coefficient de frottement statique entre l'homme et le manège et N est la norme de la force de réaction normale au manège.



- (a) Déterminer les forces extérieures exercées sur une personne à l'équilibre dans le manège.
- (b) Déterminer la vitesse angulaire minimale ω_0 pour que le plancher puisse être retiré.

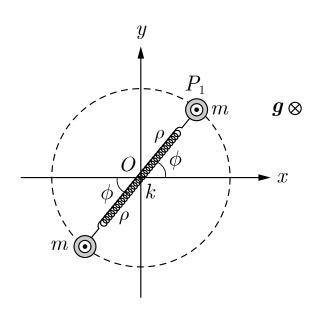
4 Pucks oscillants et tournants

Objectif : Modélisation d'une combinaison d'un mouvement circulaire et d'un mouvement harmonique oscillatoire en coordonnées cylindriques.

Théorie: 4.1 Mouvement oscillatoire; 5.1 Coordonnées cylindriques; A.5.1 Puck retenu par un ressort.

★ Examen : Problème d'examen.

Deux pucks identiques de masse m, considérés comme des points matériels P_1 et P_2 , glissent sans frottement sur une table à air dans le plan horizontal Oxy. Ils sont reliés par un ressort de constante élastique k et de longueur au repos ℓ_0 . Les deux pucks sont soumis au champ gravitationnel terrestre g. La masse du ressort est négligeable. Les conditions initiales sont telles que le centre du ressort est maintenu fixe à l'origine O et que les positions des pucks P_1 et P_2 sont symétriques par rapport à l'origine O.



Ils peuvent ainsi osciller par rapport à l'origine O et le ressort peut tourner autour de l'origine O. Les vecteurs positions des pucks \mathbf{r}_1 et \mathbf{r}_2 satisfont alors la relation,

$$r_2 = -r_1$$

- (a) Déterminer les forces extérieures exercées par le ressort sur les deux pucks.
- (b) Déterminer les équations du mouvement des pucks le long de la ligne de coordonnée radiale.
- (c) Dans le cas particulier où l'angle ϕ est constant, c'est-à-dire $\phi = \phi_0 = \text{cste}$, déterminer la pulsation des oscillations du système en terme de la masse réduite $\mu = m/2$ du système formé des deux pucks.
- (d) Dans le cas particulier où la coordonnée radiale est constante, c'est-à-dire $\rho = \rho_0 = \text{cste}$, déterminer l'équation horaire de l'angle $\phi(t)$ du puck P_1 , compte tenu de la condition initiale $\phi(0) = \phi_0$, en termes de la vitesse angulaire scalaire $\dot{\phi}$.